
A comprehensive method of analysis of axisymmetrical 

t h in  e l a s t i c  shells of revolution based on f i n i t e  element 

approach i s  presented i n  th i s  paper. 

element, by means of which any a x i s m e t r i c  s h e l l  may be 

approximated, is  a truncated conical ring. 

The basic f i n i t e  

In the limiting 

case such an element i s  replaced by a short  cylinder; a t  

the ends of a shel1,shallow spherical caps are employed. 

By using many elements, thickness variation of the  s h e l l  

can be approximated. The procedures are stated i n  matrix 

algebra and i n  principle are based on the "displacement method" 

of analysis. An example illustrates convergence of the 

\ proposed method. 
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Introduction 
* v #  

Axisymmetrical th in  s h e l l s  of revolution are widely used i n  f l i g h t  

These she l l s  often have a rb i t r a ry  shape and thickness 
and other 

/structures. 

variations t o  meet functional and manufacturing requirements. For 

various reasons, such as junctures w i t h  adjoining parts,  discontinuity 

i n  load distribution, etc., important bending s t resses  are developed i n  

the she l l s  i n  addition t o  membrane stresses. The analysis of such shells 

is, therefore, of grea t  importance to  design engineers. 

A review of l i t e r a tu re  shows t h a t  mathematical solutions of bending 

problems of axisymmetrical she l l s  of revolution a r e  available only f o r  

a f e w  special  cases. The governing d i f f e ren t i a l  equations or iginal ly  

formulated by H. Reissner and Meissner based on the c l a s s i ca l  theory of 

e l a s t i c i t y  have been solved exactly f o r  spheres, cones and cylinders of 

constant thickness (1)(2). For shel ls  with variable thickness only a few 

special  solutions e x i s t  (1) ( 3 )  

The problem becomes more complicated when the deformations are 

large. 

“small f i n i t e  deflection theory” which considers small deformations but 

a rb i t r a ry  rotations(4). 

E Reissner formulated the governing d i f f e ren t i a l  equations of the 

These equations, i n  general, can be solved only 

by asymptotic integration, and solutions can be found f o r  a few simple 

( 5 )  cases . 
The governing d i f f e ren t i a l  equations, however, can be solved by 

numerical procedures, i.e., by f i n i t e  difference method w i t h  the aid of 

a digital computer. 

Pearson, Dingwell, Adkins”), and Soare‘’’). 

Such solutions have been formulated by Sepetoski, 

However, one is  not 

assured of a high degree of accuracy even when a f ine  mesh is  used. 

This paper describes a f i n i t e  element solution of t h in  she l l s  of 
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Nomenclature 

A 

a 

B 

E 

f 

H, M, N 

:., 3 

K 

k, I; 

2 
R 

r 

r 

S 

- 

S 

force transformation matrix 

radius of sphere o r  cylinder 

displacement transformation matrix 

modulus of e l a s t i c i t y  

element f l e x i b i l i t y  matrix 

s t ress-resul tants  

designations f o r  upper and lower edges of an element 

s t i f fness  matrix of the s t ructure  (assemblage) 

element s t i f fness  matrix 

element length; a l so  J? = f o r  spherical  CCT) 

jo in t  o r  edge force matrix 

displacement matrix; horizontal radius 

r a t io  sj/si 

element force matrix 

distance along cone from apex 

thickness of she l l  

unknovn j o i n t  displacement matrix 

element disphcement matrix; meridianal displacements 

unknown j o i n t  force matrix 

J 

inclination of conical element 

displacements ; deformations 

Poisson's r a t i o  

Other Symbol6 and super- and subscripts are defined i n  t h e  t e x t  Or 
on the figure. 
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revolution i n  which the ac tua l  she l l  of arbitrary shape and smoothly 

v a u y i n g  thickness i s  approximated by a ser ies  of truncated cones and 

cylinders and shallow spherical  caps f o r  the end pieces. With the 

s t ruc tu ra l  properties of the elements knovn from available solutions of 

conical, cylindrical, and spherical shells,  a solution of the general 

problem can be obtained f o r  any axisymmetrically applied loads by the 

matrix method of analysis familiar t o  s t ruc tu ra l  engineers. if the 

loads are applied i n  several  increments and a t  each s tep  the deformed 

shape of the s h e l l  i s  considered as the new out l ine of t h e  shel l ,  t h e  

solut ion becomes equivalent t o  one based on a large deformation theory. 

A l s o  a f t e r  each step of loading the s t resses  and s t r a ins  i n  the individual 

elements determine whether o r  not a new set of constants defining mater ia l  

properties should be assigned i n  the next load increment. In t h i s  manner, 

the method can be extended t o  include non-elastic material properties 

provided the b iax ia l  stress-strain relat ion of the material i s  hown. 

In  t h i s  paper only the b a s i c  principles and formulations necessary 

f o r  a small deformation e l a s t i c  analysis a r e  presented. ReP#ders 

interested i n  fur ther  de ta i l s  of the method a r e  referred t o  a technical 

report  by t h e  authors . (10) 

Conical Elements 

In recent years the basic principles of the f i n i t e  e l m e s t  rethod 

of s t ruc tu ra l  analysis have become w e l l  knotm and are adequately 

described i n  the l i t e ra ture(6) .  

"displaceaent method" of analysis is  employed. 

i s  f i rs t  discussed with reference t o  the conical e lewnts .  

Here t o  solve the problem, the . 

This solution procedure 

Later, the 
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needed additional equations f o r  cylindrical  elements and the spherical  

cap a re  given. 

In a typical  n-th conical element such as shown i n  Fig. 1, Mi (4 , 
a re  self-equilibrating s t ress-resul tants  and 

j 
PI (n), Hi(n), and €I 

may be applied independently. 

must be balanced by Ni(n); hence, Ni 

Together these f ive  independent element edge-forces acting on a truncated 

cone form the S(n) column matrix. As  may be seen from Fig. 1, the 

(n)  and the 

j 

For ver t i ca l  equilibrium N (n), however, 

j i' 
- 3 

= 7 N (n) where r = s /s 3 

rotations x i  (4 , xj("), t h e  displacements tji (4 , tjj 

s t re tch  e(n) i n  the direction of the cone generator occur corresponding 

t o  t h i s  system of forces. Positive sense f o r  these f ive  displacements 

i s  i n  the  posit ive direction of the applied forces and f o r  any n-th 

conical element, they can be related t o  t h e  applied edge forces through 

a f l e x i b i l i t y  matrix i n  the following manner: 

= I  . 

14 

. 

o r  simply as 

After lengthy manipulations, based on the bending theory of 



. 

* t  5 
conical shells('), together with the membrane solution f o r  stress- 

resul tants  Ni and N the following relat ions corresponding t o  
j '  

Eq. 1 written i n  expanded form a r e  obtained: * 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

i 61 = -cP3 

+ 

+ 

+ 

+ 

(5 cot a /Et)N 
. .  j 

( c o t  a /Et)N 
j 

( v  s j  cos C%. / E t )  N j  
. .  

Y 

-'For s impl i c i ty , swrs  c r ip t s  (n) on a l l  displacements and s t ress-resul tants ,  
and subscripts on a a re  omitted. 



+(sj log r / Et)NJ 

- 1 
where Cpl P 2 [ 3(1-v ) ] cot  CX/Et2 , Cp2 = c o t  a / E t  , 

Cp3 = c o t  a COS a/Et 



n 

d = minors of item i j  i n  the determinant A . 
Ji 

bl(y) 3: ber y - 2y-he i ' y  

kl(y) = ker  y - 2y-lkeiIy 

b3(Y) = Y ber'y - 2(1-v) b&Y) 

b2(y) = bei y + 2y-Lber'y 

k2(y) = kei y + 2y ker'y 

b4(y) = y bei 'y - 2(1-v) b2(y) 

-1 
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The appropriate terms i n  Eq. 3 define the elements of t h e  matrix 

f (n )  i n  Q. 1. 

the corresponding quantit ies on the opposite s ide of the diagonal and 

the matrix i s  not symmetrical. 

Some elements i n  th i s  matrix bear a r a t i o  of r t o  

Nevertheless, it can be shovn t h a t  

Betti's l a w  is  sat isf ied,  and the  matrix could be symmetrized by using 

i n  t h e  solution t o t a l  force quantities around each edge. However, it 

appears more advantageous t o  work with edge forces per unit  of length 

s ince  these a r e  the quantities used i n  the  she l l  equations. 

The accuracy of the matrix f (n) ,  judged from the values of the 

quantit ies on opposite sides of the main diagonal, has been investigated 

over a wide range of thickness, lengths, angles and radii of cones. 

It was found tha t  the upper left  4 by 4 portion of the matrix i s  very 

good i n  almost every case. 

the diagonal develop as a approaches 90'. Nevertheless, t h e  matrix 

remains va l id  as long as t a n a  i s  f i n i t e .  The f i f t h  column and f i f t h  

row which depend on different  mathematical functions diverge as the 

geometry of the cone approaches extreme cases. 

between quantit ies of the f i f t h  column and the f i f t h  row, it i s  recommended 

t h a t  the quantit ies of the f i f t h  row fo r  f l a t  conical elements be used 

t o  establ ish those of the f i f t h  column since f o r  a small a pla te  act ion 

predominates. For nearly ver t ical  conical elements, quantit ies of t h e  

f i f t h  column should be used t o  establish those of the f i f t h  row. Uith 

minor modifications the  basic procedure is  applicable f o r  conical rings 

w i t h  larger  periphery on the top than on the bottom. 

However, discrepancies on opposite s ides  of 

To eliminate discrepancies 

For subsequent work, through a displacement transformation matrix 

B, the f ive  displacements shown ea r l i e r  i n  Fig. 1 m u s t  be related t o  the 

six possible edge displacements. Posit ive directions f o r  the  s i x  new 
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displacements a re  defined i n  Fig. 2 t o  agree w i t h  later usage. 

transformation i s  

This 

r 

-1 

0 

0 

0 

0 - 

0 

0 

-1 

0 

-cos a n 

0 
I 
1 

0 

I 

0 ' 1  
I 

0 ' 0  
I 

0 1 0  

I 

I 

1 
I 

s i n  (r: 0 n l  

0 

0 

0 

1 

cos a n 

7 
o !  

0 

-sin a n 

o r  i n  a l ternat ive symbolic forms, one has 

In an analogous manner, using the force transformation matrix A, 

t h e  f i ve  independent stress-resultants shown i n  Fig. 1 can be related 

t o  the s i x  edge forces shorn i n  Fig. 2. Vith t h e  a id  of these 

diagrams, one obtains 

-t 

n 

(4 0 0 0 0 -sin an 

0 0 0 1 c o s a  p\W 
h j  

'v i 

(4) 

1 
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or  i n  abbreviated forms, 

S (n)) ( 7 )  

Structural  St i f fness  of Assemblage - 
After the various s t ruc tura l  properties f o r  a truncated conical 

element have been established, s t ruc tura l  s t i f fness  f o r  an assemblage 

consisting of conical elements can be fonnulated. 

from Eq. 2 one solves f o r  S (n )  and subst i tutes  i n to  Eq.7. Whence upon 

combining t h i s  r e s u l t  w i t h  Eq. 5, and noting t h a t  k - 
one obtains 

To accomplish t h i s ,  

I 

o r  

By noting frm Eqs, 5 and 7 t h a t  A(n) and B(n) can be writ ten i n  

par t i t ioned  form, it is possible to  recast  the expression for E ( ~ )  a l so  

in to  a par t i t ioned form as 

It should be noted tha t  an i - t h  edge of the n-th element and the 

j - t h  edge of the (n-1)-th element meet a t  the n-th j o i n t  of the 

assemblage. Therefore, the jo in t  force, Fig. 3, i s  
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For the same n-th jo in t  of t h e  assemblage, the displacement 

common t o  the  displacement of the bottom edge of the upper element 

and t o  the upper edge of the  lower element, i.e. 

rn is 

U s i n g  Eqs. 7, 10, and 5, Eq. 9 can now be re-stated as 

{n;} 

and with the aid of Eqs. 11 and 12, one fimlly can obtain the 

following recursion formula: 

(12 j 

Using t h i s  relation, the s t ruc tura l  s t i f fness  K f o r  the whole 

assemblage may be stated as a tridiagonal matrix as 



R1 

% 

3 R 

. 

. 
Rnt, 

. 

. . 

. . 

. . 

0 

. 

. 

. 
8 

. 

. 

. 

This matrix equation is  the basic re la t ion R = Kr for the displacement 

method of analysis writ ten i n  a special  manner. The computational 
- - - - 

procedure s t a t ed  by Eq. 15, has the advantage tha t  

f o r  each element a r e  developed and put i n to  t h e i r  assigned posit ion i n  

kii, kij, kji, k j j  

a do-loop of the computer program, i.e., the K matrix i s  developed 

d i rec t ly  from the matrices of individual elements. This eliminates the 

necessity of storage of the large matrices A, B, and k. The f ina l  K 

matrix i s  the only large matrix which remains i n  the computer. If t h i s  

K matrix i s  stored i n  a conventional rectangular form, the 7090 computer 

can handle problems involving 45 elements. 

skew storage and solution o r  by applying a recursion process(7) problems 

By using subroutines of 

involving several  hundred elements can be solved. 

I n  a general problem neither a l l  terms of R nor a l l  terms of 

r a re  completely specified. Equation 15, however, can be re-s ta ted 

i n  par t i t ioned form as 



where t h e  unknown displacement U can be found first, and then the  

unknown j o i n t  forces X . Wth t h i s  information, using Eq.7, a l l  

components of S(n) f o r  each element of the assemblage can be determined. 

comprising S'n), acting on the edges of a conical element a re  known, 

the  in t e rna l  stresses and deformation a t  any point i n  the cone can be 

found using equations such as given by Fl'kge (1) The constants Al, 

A,.., B1, B2 

stresses can be determined frm the  previously given quantit ies using 

of the F l * k e  equation (Ref. 1, p. 373) f o r  the bending 

the following relationship: 

*1 

A2 

B1 I B2 

13 a 14 11 

21 a22 a23 a24 a 

bll b12 13 b14 

b21 b22 b23 b24 

a I2 a it 

b 

In the notation of the reference, t h i s  must be supplemented by 

-.s .= M. s .  / s and Ne = 0 to  account f o r  the membrane stresses.  
J J  

Cvlindrical Element 

In  t h e  formulation of  some problems cyl indrical  elements a r e  

encountered and t h e i r  s t ruc tura l  properties inust be known. 

transformation matrix A and the displacement transformation matrix B 

f o r  the cyl indrical  element follow d i rec t ly  from the previously stated 

Eqs. 4 and 6 upon se t t ing  a = goo, with 

a cyl indrical  element, however, m u s t  be developed anew. The expressions 

sought can be found from the bending and membrane solutions of cyl indrical  

The force 

- 
r = 1 e The f l e x i b i l i t y  of 
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shells. After soine manipulation, the bending and the membrane 

solutions''), corresponding t o  the system of edge forces shown i n  

~ i g .  4, yields the following resul ts :  * 

w w + e (cos w - s i n  w)C + e (cos w + s i n  w)CU 32 

23 
+ [-e-w(cos w + s i n  u)c + e-u(cos w - s i n  w>c 

431 H i  
+ e (cos o - s i n  W)C 

+ [ - ea (cos  w + s i n  w)Cl4 + e-W(cos w - s i n  w)c24 

+ e (cos w - s i n  W ) C  

13 

+ e (cos w + s i n  W ) C  
W w 

33 

441 Hj } w w + e (cos w + s i n  W ) C  34 

= (-C -C )M + (-C -C )M + ( - C  -C )H + (-C14-C34)Hj 
'i 11 31 i 12 32 3 13 33 1 

+ (va/Et)N 

6 = (e-wcos w c + e -w s i n  w cZ1 + e W cos w c + e W s i n  w c ~ ~ ) M ~  
ii 11 31 

+ (e-Wcos w c + emwsin w c + e cos w c 

+ (e-("cos w c + e-wsin w c + e w cos w c 

+ (e-wcos w c 

u + e w s i n  w C42)Mj 

+ e W s i n  w c ~ ~ ) H ~  

+ e -W s i n  w c~~ + e w cos w c + e W sin w c ~ ~ )  H~ 

32 

13 23 33 

14  34 

I 2  22 

- (va /E t )N  

"For simplicity, superscripts (n) on a l l  displacements and s t ress-resul tants  
are omitted. 
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+ ( d / E t ) N  

C44 satisfy t h e  relations e 
43 ' vilere w = K ;  , Cll , .... .... C 

+ C M + C13Hi + C.,4Hj C1 = Cl1Mi 

C2 = C21Mi + C22Mj + CZ3Hi + C 2 4 H j  

C = C Mi + C32Mj 

z j  

+ C Hi + C34Hj 33 

+ C 4 $ i j  + C H i  + C41+Hj 43 

3 31 

C 4  = CblMi 

2 2 
Cll = D1p /(A ) 

5 3  = D31a3 / (A 2 K 2 )  

2 2 = -D=a / (A 2IW ) c21 

C = -D32a 3 / (A 2K2) 23 
2 2 

C = D13a / (A 2 K K  ) 31 

C D33a.3 / (A 2 K 2 )  33 = 

2 2 = -D14a / (A 2 K K  ) '41 

c43 = -D34a3 / (A 2x2) 

= -D21a 2 / (A 2 K 8 )  
c12 

'14 - - -D41a3 / (A 2 K 2 )  

2 
C22 = D22a / (A 2 K 3 )  

'24 = D&a3 / (A 2 K 2 )  

2 C = -D23a / (A 2 K 2 )  32 

C = -D43a 3 / (A 2K2) 34 

~ 4 2  = ~ 2 i ~ a ~  / (A 2 ~ 3 )  

C44 = D44a3 / (A 2 K 2 )  

A = s i n  w + ( e  w - e-u)] 12 s i n  w - ( e  w - e-")] 



2w Dll = cos 2 w - s i n  2 w - e 

W -W W = -(cos w + s i n  w)(e - e ) - 2 s in  w e D21 
2w D = e  - 1 - s i n 2 w  31 

W -W W 
= C O S W ( C  - e  ) - 2 s i n w e  D41 

2 2 2w 
D1;! = (cos 

DZ2 = -cos w ( e  

D32 = 2 s i n  w 

D42 = - s i n  w (e  

- s i n  w)  + 2 s i n  w - e 

- e-w) - s in  w (e  W W + e-”) 

2 

W - e-”) 

-2w D = -e + s i n  2w + cos 2w 

D = (cos w - s i n  w ) ( e  

D 3 3 = 1 - e  - s i n  2~ 

D = c o s w  ( e  - e  ) - 2 s i n w e  

13 

23 
W - e-W) + 2 s i n  w e-w 

-2w 

W -W -w 
43 

-20 2 
D1,+ = e 

D24 = -cos W ( e  

D34 E 2 s i n  w 

D4)+ = -sin w ( e  

- 2 s i n  w - s i n  2w - 1 

W W - e-W) - ’sin w ( e  + e-w) 

2 

W - e-w) 

From the above equation,.the f l e x i b i l i t y  matrix analogous t o  t h a t  

given schematically by Eq. 1 can be obtained. In th i s  matrix the 

(n) a re  zero, and Idn )  =: By invert- elements f 15 ’ f2’j ’ f51 ’ f52 J 
ing the f matrix, the  s t i f fness  matrix k for a cylindrical  ring is  

obtained. 
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In a solution of a complete problem, a f t e r  t h e  edge stress- 

resul tants  Mi (.) , Idj (n) , Hi (n)  , Hj (n), dn) f o r  a ring a re  determined, 

s t resses  and displacements a t  any point of the ring can be found. 

the equations such as given by FlnWe (Ref .  1, p. 228) the constants 

C1, C2, C3, C4 a re  given by Eq. 18 of t h i s  paper. 

For 

Spherical Cap 

In  many instances a s h e l l  o f  revolution may be closed a t  an end. 

In f i n i t e  element solution t h i s  closure can be approximated by a shallow 

spherical  cap. 

found by first comparing the displacements and the force systems shown i n  

The required s t ruc tura l  properties for such a cap a r e  

Fig. 3 and 5. From t h i s ,  the displacement transformation matrix B ( 0 )  

and t h e  force transformation matrix A(') may be formulated as follovs:  

1 

0 

0 - 

and 

- 
1 

0 

0 - 
o r  i n  symbolic form corresponding t o  the analogous Eqs. 5 and 7, 

and 

No subscripts f o r  the symbols i n  t h e  last equation are necessary since 

t k r e  are no upper and lover edges i n  a cap. 

The force-deformation relationship f o r  "cle cap m u s t  be established 

next. Such an equation, using the f l e x i b i l i t y  matrix, can be writ ten as 
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or i n  t h e  abbreviated notation as 

f ( O )  is  the s t i f fness  matrix k(O) of the cap. 

v ( 0 )  = f  ('1 S'O). m e  inverse of 

To determine the elenents o f  the f ( O )  matrix, the available 

solutioii(1)(2) f o r  bending of a shallow spherical  s h e l l  was uti l ized. 

For this purpose, the shallow cap was assumed supported by a concentrated 

force P as shown i n  Fig. 5, and the change i n  ve r t i ca l  height ,!jv ( 0 )  

vas determined corresponding t o  balanced ve r t i ca l  forces. This 

approximate solution causes a local "hump" near the singular point. 

making the cap, however, suff ic ient ly  small, the e f fec t  of t h i s  l oca l  

phenomenon can be minimized. Other defonnations vere found i n  a conven- 

t i o n a l  manner. On t h i s  basis, t h e  following expressions apply: 

do) = (l/&) (Cllber'xo + C21bei'xo)M ( 0 )  

+ &/&)(C2ber'xo + C22bei'x )H ( 0 )  
0 

+ (I&)(Cl3ber'x + C kei'x - ( 1 2 r o / K )  kei 'x ) Q ( O )  
0 23 0 0 

- (1 + v )  bei*xo 

- (1 + v )  bei 'x  

- (1 + v )  bei'xo 

01 
kei xo + (1 + v )  kerlxo + (l+ v )/xo 

I + (t?/a)C23 [xo bei x + (1 + v )  ber 'x 
0 
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2 2  
0 

( O )  =I,, [-(.e /a )x (1 + v) bei'x - ber x 
6V 0 0 

[(e2x /a2)(1 + v) ber'xo .- bei x I} M(') 
+ c21 0 0 

+ { CE [-(&'xO/a2)(l + V) bei'x - ber x 

+ c22 [( g2xo/a2)(1 + v) bertxo - bei x 0 ]I&') 
+ ( C13 [-(e2xo/a2)(l + v )  bei'x - ber x 

+ C [(x2xo/a2)(l + v )  ber'x - bei x 

0 

0 0 

0 

23 0 0 1 
- ( e2ro/K) [(J2xo/a 2 )(1 + v)(lrer'x + l/xo) - kei x 

0 

and A = 

= -(l/AEt)(a3x 0 /(a ber xo - (1 - v)bei~xo/xo] 

1 r - [bei xo + (1- v )ber'xo/xo - (1- v )bei'xo/xo 

~ 

0 
= ( l / A ) l  I ( J2r /K) ker'xo - ber'x ker xo 5 3  0 

- (1 - v)bei'xo ker*xo/xo + (1- v )ber'xo kertxo/xo] 

ber xo - (1 - v)beitxo/xo 

0 
= -( d2/AK) bei'x 

c21 

= -(l/mt)(a3x /(a c22 0 0 

C = (l/A) (R2r /K) - bei'x ker x 

bei xo + (1- v)berfxo/xo 

0 23 0 0 0 

1 + (1 - v)ber'xo ker'xo/xo + (1 - v)beitxo keitxo/xo 

0 0  1 -  + (g3/k)(a 2 2  /(a + 2) bei xo + (1 - v)ber'x /x 

1 1 

/ = (at)7[12(1 - v"] 

bei'x -ber'xo 
0 I 
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Joint  Loads 

If t h e  applied loads are concentrated and a c t  at the jo in t s  of the 

assemhlage, the solution procedure given above is d i r ec t ly  applicable. 

For dis t r ibuted loadings such as occur, f o r  example, when a shell is  

pressurized, t h e  loading condition m u s t  be approximated by concentrated 

forces applied a t  nodal points. 

developed. I n  the one, the  distributed load is  concentrated a t  several  

of the nodalpoints ;  i n  the other, reversed fixed-edge forces a r e  applied 

a t  the joints.  In the latter case, the fixed-edge forces must be super- 

imposed on the element forces obtained from the solution of the 

assemblage of elements to give the final result .  

For t h i s  purpose two schemes were 

(a )  The approximate load on j o i n t  n, Mg. 3, simply taken as the 

components of the total pressure on the t r ibu tary  (shaded) amas as 

sham i n  Ng. 6 are 

where ra , r a re  two radii of the centroids1 c i rc les  f o r  element a 

above and b bebv the jo in t  n , and aa I ab are the inclinations of 

the  respective elements. For such an approximation of loading, the  loads 

contributed by the pressure on the s p k r i c a l  cap a= assuned concentrated 

along the bottom edge of the cap. pr is the internal pressure, 

(b)  The j o i n t  loads from fixed-edge forces can be found fmm the 

following expression 
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where S p )  is  the matrix representing the fixed-edge forces acting on 

an element, and vp' is the matrix f o r  the membrane deformations of the 

element. For future reference, the membrane displacements of the 

elements a r e  listed below. 

displacement of the top edge, these relat ions a re  

For the truncated cone having no meridional 

The corresponding expressions f o r  cyl indrical  element are 

2 (n) =, p, a2/ Et ' mj (n) = -p, a / Et ' m i  

and f o r  the spherical  cap are 

(*) = (1 - v )  pr ro / 2Et 
3Gm 
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I l l u s t r a t ive  Example 

As an application of the procedures described above, resu l t s  of 

several  analyses of a spherical  s h e l l  are reported. A spherical  s h e l l  

was selected f o r  ease of comparison with known solutions. 

considered is 0.5 in. thick, has a 100 in. radius, and a cent ra l  semi- 

angle of 75'. 

100 psi .  Let E = 10 psi, and v = 0.2. 

The s h e l l  

The edges are clamped, and the uni t  i s  pressurized t o  

7 

This s h e l l  was analyzed by three different  procedures. In the one, 

reversed fixed-end forces were applied a t  the jo in ts  of the assemblage 

and the problem solved. The result ing meridional moments f o r  three 

different  arrangements of elements a r e  shown i n  Fig. 7. The angles 

subtended by t h e  elements ranging f ran  top t o  bottom are noted on the 

figure. Alternatively, t h e  problem vas re-solved using approximate j o i n t  

loads. The end resu l t s  are shown i n  Fig. 8. I n  these solutions equal 

s i ze  elements were used i n  each case. 

l.!jo, 2', and 30, respectively, are  noted on the figure. 

The assumed subtended angles of 

In examining the ttro se t s  of solutions it is seen tha t  the stresses 

near the apex a re  unreal is t ic  and m u s t  be discarded. 

of 5' semi-angle i s  too large i n  comparison with t h e  conical elements. 

The assumed cap 

Instead of having a cap a t  all,  however, a much larger  portion of the 

s h e l l  may be completely removed, and only a force determined from the 

membrane analysis applied at  the newly created boundary. This procedure 

minimizes t h e  number of elements required i n  the analysis and is recommended 

whenever applicable. Also from the diagrams it can be noted, with 

pa r t i cu la r  c l a r i t y  from Fig. 8 where the  same s ize  elements are used, 

t h a t  over a considerable range of jd the curves are horizontal. This 

range i n  the real s t ructure  corresponds t o  the zone where membrane stresses 
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a re  predominant aad where v i r tua l ly  no bending s t resses  occur. The 

s t ructure  vas analyzed, however, as if  it were loaded with concentrated 

forces. This distorts t h e  r e a l  s i tuat ion and indicates the presence of 

moments of constant magnitude over a large zone of the shell. By taking 

t h e  length of elements very small, these "residual moments" can be 

reduced t o  negligible amounts. I t  a l so  appears suf f ic ien t ly  j u s t i f i e d  

t o  simply s h i f t  the base-line of the graph by the amount equal t o  the 

residual  moment corresponding t o  the s ize  of the elements provided the 

element lengths and break angles are constant. 

example, the  corrected maximuan moments f o r  the three s izes  of elements 

On t h i s  basis, f o r  

are 595.9, 596.0, and 597.8, respectively. These values compare very 

favorably with the value of 589.2 which is  obtained from Hetenyi's 

equations f o r  a spherical  s h e l l  (8) . 
Excellent resu l t s  are obtained with a minimum number of elements 

i f  edge dis tor t ions i n  the primary s t ructure  calculated on the assumption 

of membrane act ion a r e  made compatible w i t h  the prescribed boundary 

conditions using the f i n i t e  element model. This does not introduce i n  

the in t e r io r  jo in ts  any "residual moments" nor any jo in t  loads. Solutions 

of the same problem based on this  procedure a r e  shown i n  Fig. 9. 

Eased on the above and other examples, it is concluded t h a t  t h e  

proposed method can yield suff ic ient ly  accurate resu l t s  f o r  most 

p r a c t i c a l  purposes. Moreover, the  method i s  highly versa t i le  and can 

be applied t o  problems which cannot be solved by any other means. 

Note : 
After the vorlc on th i s  phase of the investigation was completed, a 

paper using somewhat similar approach by Peter E. Grafton and Donald R. 
Strome on "Analysis of Axisymmetrical Shells by the Direct St i f fness  Method" 
appeared i n  the October 1963 AIAA Journal, Vol. 1, No. 10, pp. 2342-2347. 
In this paper several  aspects of the solution a r e  done differently.  

- 
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